Four-dimensional differential equations for the leading divergences of dimensionally-regulated loop integrals

نویسندگان

چکیده

We invent an automated method for computing the divergent part of Feynman integrals in dimensional regularization. Our exploits simplifications from four-dimensional integration-by-parts identities. Leveraging algorithms literature, we show how to find simple differential equations integrals. illustrate by application heavy quark effective theory at three loops.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionally Regulated One-Loop Integrals

We describe methods for evaluating one-loop integrals in 4−2 dimensions. We give a recursion relation that expresses the scalar n-point integral as a cyclicly symmetric combination of (n− 1)point integrals. The computation of such integrals thus reduces to the calculation of box diagrams (n = 4). The tensor integrals required in gauge theory may be obtained by differentiating the scalar integra...

متن کامل

Reduction formalism for dimensionally regulated one - loop N - point integrals

We consider one-loop scalar and tensor integrals with an arbitrary number of external legs relevant for multi-parton processes in massless theories. We present a procedure to reduce N-point scalar functions with generic 4-dimensional external momenta to box integrals in (4 − 2ǫ) dimensions. We derive a formula valid for arbitrary N and give an explicit expression for N = 6. Further a tensor red...

متن کامل

Dimensionally Regulated Pentagon Integrals?

We present methods for evaluating the Feynman parameter integrals associated with the pentagon diagram in 4 − 2 dimensions, along with explicit results for the integrals with all masses vanishing or with one non-vanishing external mass. The scalar pentagon integral can be expressed as a linear combination of box integrals, up to O( ) corrections, a result which is the dimensionallyregulated ver...

متن کامل

Reduction method for dimensionally regulated one-loop N-point Feynman integrals

We present a systematic method for reducing an arbitrary one−loop N(≥ 5)−point massless Feynman integral with generic 4−dimensional momenta to a set comprised of eight fundamental scalar integrals: six box integrals in D = 6, a triangle integral in D = 4, and a general two−point integral in D = 4 + 2ε space time dimensions. All IR divergences present in the original integral are contained in th...

متن کامل

Dimensionally regulated one − loop box scalar integrals with massless internal lines

Using the Feynman parameter method, we have calculated in an elegant manner a set of one−loop box scalar integrals with massless internal lines, but containing 0, 1, 2, or 3 external massive lines. To treat IR divergences (both soft and collinear), the dimensional regularization method has been employed. The results for these integrals, which appear in the process of evaluating one−loop (N ≥ 5)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2023

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep03(2023)162